Characterization of isochronous foci for planar analytic differential systems

JAUME GINÉ & MAITE GRAU

Departament de Matemàtica. Universitat de Lleida.
Avda. Jaume II, 69. 25001 Lleida, SPAIN.
E–mails: gine@eps.udl.es and mtgrau@matematica.udl.es

Abstract

We consider the two-dimensional autonomous systems of differential equations of the form:
\[\dot{x} = \lambda x - y + P(x, y), \quad \dot{y} = x + \lambda y + Q(x, y), \]
where \(P(x, y) \) and \(Q(x, y) \) are analytic functions of order \(\geq 2 \). These systems have a focus at the origin if \(\lambda \neq 0 \), and have either a center or a weak focus if \(\lambda = 0 \). In this work we study necessary and sufficient conditions for the existence of an isochronous critical point at the origin. Our result is original when applied to weak foci and gives known results when applied to strong foci or to centers.

Keywords: nonlinear differential equations, isochronicity.
AMS classification: Primary 34C05; Secondary 34C23, 37G15.

1 Introduction

Let us consider an autonomous differential system:
\[\dot{x} = \lambda x - y + P(x, y), \quad \dot{y} = x + \lambda y + Q(x, y), \quad (1.1) \]
where \(P(x, y) \) and \(Q(x, y) \) are analytic functions in a neighborhood \(U \) of the origin \(O \) and of order greater or equal than two. We assume that \(O \) is an isolated singular point of (1.1). We denote by \(X \) the equivalent vector field:
\[X = (\lambda x - y + P(x, y)) \frac{\partial}{\partial x} + (x + \lambda y + Q(x, y)) \frac{\partial}{\partial y}. \]
An isolated singular point of (1.1) is said to be a focus if it has a neighborhood where all the orbits spiral in forward or backward time. An isolated singular point of (1.1) is said to be a center if it has a punctured neighborhood filled of periodic orbits. System (1.1) has a strong focus at the origin if \(\lambda \neq 0 \) and it has a weak focus or a center at
the origin if \(\lambda = 0 \).

A main problem is that of studying the existence and properties of periodic solutions in a neighborhood of the origin of (1.1). In this field, different methods have been used to study isolated periodic solutions, i.e. limit cycles, or non-isolated ones, i.e. period annulus. The stability of the singular point \(O \) does not imply the stability of the cycles close to the singular point. In fact, a non-isolated cycle is Liapunov stable if and only if every neighboring cycle has the same period. This fact motivates the definition of isochronicity. We give a precise definition of isochronicity in the forthcoming paragraph. Isochronicity has been widely studied not only for its physical meaning and for its role in stability theory, but also for its relationship with bifurcation problems and to boundary value problems.

An essential tool to study the stability of the origin of system (1.1) is the Poincaré map, see [14, 15]. Let us consider a neighborhood \(\mathcal{U} \) of the origin and let \(\Sigma \) be a section of system (1.1) through the origin, that is, a transversal curve through the origin for the flow of system (1.1).

More precisely, we define a section through the origin as a simple arc without contact with the origin \(O \) as an endpoint. See the book of Andronov et al. [1], page 55, for a precise definition of simple arc without contact. We also need some assumptions on its regularity for technical reasons. Given a section through the origin \(\Sigma \subset \mathbb{R}^2 \), we consider a parameterization \(c: \mathbb{R} \to \mathbb{R}^2 \) such that \(\Sigma = \{ c(\sigma) \mid \sigma \in \mathbb{R} \} \) and \(\lim_{\sigma \to -\infty} c(\sigma) = O \).

We assume that \(c(\sigma) \) is analytic for all \(\sigma \in \mathbb{R} \).

For each point \(p \in \Sigma \), the flow of system (1.1) through \(p \) will cross \(\Sigma \) again at a point \(P(p) \in \Sigma \) near \(p \). The map \(p \mapsto P(p) \) is called the Poincaré map. If we denote by \(\Phi_t(p) \) the flow of system (1.1) with the initial condition \(\Phi_0(p) = p \), we can define the Poincaré map in the following way. Given \(p \in \Sigma \), there is a unique analytic function \(\tau(p) \) such that \(\Phi_{\tau(p)}(p) \in \Sigma \) and \(\Phi_t(p) \notin \Sigma \) for any \(0 < t < \tau(p) \), see [14]. In these terms, we have \(P(p) = \Phi_{\tau(p)}(p) \).

We remark that both functions \(\mathcal{P} \) and \(\tau \) depend on the chosen section \(\Sigma \). The function \(\tau: \Sigma \to \mathbb{R}^+ \) is called the period function. As usual \(\mathbb{R}^+ \) denotes the set of positive real numbers. In this paper we study the existence of a section \(\Sigma \) such that \(\tau: \Sigma \to \mathbb{R}^+ \) is constant. When such a \(\Sigma \) exists, we say that the origin \(O \) of (1.1) is isochronous and that \(\Sigma \) is an isochronous section.

We will call a center an analytic system of the form (1.1) with \(\lambda = 0 \) and where the origin \(O \) is a center. Isochronicity has been widely studied for centers, see for instance [8] and the references therein. We remark that the period function of a center does not depend on the chosen section \(\Sigma \). The main methods used in order to study isochronicity of centers can be roughly classified in two categories, linearization and commutation.

Finding a linearization for a center \(\mathcal{X} \) means finding a transformation \(\phi: \mathcal{U} \to \mathcal{U} \) analytic in a neighborhood of the origin such that \(D\phi(O) = I \), where \(I \) denotes the \(2 \times 2 \) identity matrix, such that the transformed system is a linear center, that is \(\phi_*(\mathcal{X}) = -y \partial/\partial x + x \partial/\partial y \). If such a transformation exists, then all the orbits have the same period, coinciding with the period of the linear center. So, a center is isochronous if and only if a linearization can be found.

Finding a commutator for a center \(\mathcal{X} \) means finding a second vector field \(\mathcal{Y} \) analytic in a neighborhood of the origin and of the form

\[
\mathcal{Y} = (x + A(x,y)) \frac{\partial}{\partial x} + (y + B(x,y)) \frac{\partial}{\partial y}.
\]

(1.2)
with A and B analytic functions of order ≥ 2, such that the Lie bracket $[\mathcal{X}, \mathcal{Y}]$ of the center \mathcal{X} and \mathcal{Y} identically vanishes.

An isolated singular point of a real planar analytic autonomous system is called a **star node** if the linear part of the vector field at the singular point has equal non-zero eigenvalues and it is diagonalizable. Clearly, the origin is a star node for (1.2). By an affine change of coordinates any vector field with a star node can be brought to the form (1.2).

Given two analytic vector fields defined in an open set U, \mathcal{X} and \mathcal{Y}, we say that they are **transversal** at noncritical points when they both have the same critical points in U, and if $p \in U$ is such that $\mathcal{X}(p) \neq 0$ then the function given by the wedge product of \mathcal{X} and \mathcal{Y} is not zero at p. From now on, we always assume that \mathcal{X} and \mathcal{Y} are analytic vector fields defined in a neighborhood U of the origin and transversal at non critical points.

We will always consider analytic vector fields although many of the stated results apply also for vector fields with weaker differentiability restrictions. The results of Sabatini [12] go on this direction. We define a smooth function as a function of class C^∞ in a neighborhood U of the origin O. Analogously, a smooth vector field is defined by smooth functions.

The following result, proved in [2] (Theorem 2.4, page 140), characterizes centers in terms of Lie brackets.

Theorem 1.1 [2] System (1.1) with $\lambda = 0$ has a center at the origin if, and only if, there exists a smooth vector field U of the form (1.2) and a smooth scalar function $\nu(x, y)$ with $\nu(0, 0) = 0$ such that $[\mathcal{X}, U] = \nu \mathcal{X}$.

The most important result on characterization of isochronous centers appears in [16, 10]. A further study can be found in, for instance, [2, 7] and the references therein. See [3] for a constructive method of U and ν in special cases for polynomial vector fields.

The following theorem, which is stated and proved in [10] (Theorem 2, page 98), gives the equivalence between commutation and isochronicity for centers.

Theorem 1.2 [10] Let O be a center of system (1.1), with $\lambda = 0$. Then O is isochronous for system (1.1) if, and only if, there exists an analytic vector field \mathcal{Y} of the form (1.2), transversal to \mathcal{X} and such that $[\mathcal{X}, \mathcal{Y}] \equiv 0$.

Another work on commuting systems is [11], where M. Sabatini discusses the local and global behavior of the orbits of a pair of commuting systems and gives several illustrative examples. A wide collection of commutators and linearizations can be found in [4].

When a center is isochronous, it is possible to construct an isochronous section Σ, see for instance [12]. However, the existence of an isochronous section is not strictly dependent on the existence of a center. A system can have a singular point of focus type with an isochronous section. This implies the existence of a neighborhood covered with solutions spiralling towards the singular point, all meeting Σ at equal time intervals. Such a behavior may occur, for instance, in a pendulum with friction, or in an electric circuit with dissipation, see also [12]. Our main result, Theorem 3.1, characterizes when the origin of system (1.1) is isochronous, even when the origin is a center, a weak focus or a strong focus. In this paper, we adapt the two different techniques usually used for isochronous centers, in order to study isochronous foci.

In Section 2 we summarize the known results on isochronicity for foci. It is shown that a strong focus of an analytic system is always isochronous. All the results described in Section 2 only apply for systems of the form (1.1) with $\lambda \neq 0$ or for centers.
Section 3 contains the main theorem of this work which characterizes isochronicity for the origin of a system (1.1). Our result is original when applied to weak foci and gives known results when applied to strong foci or to centers. We modify the commutators’ method to study isochronous critical points. We prove that system (1.1) has a transversal vector field Y such that the vector field $[X, Y]$ is proportional to Y if, and only if, system (1.1) has an isochronous critical point at the origin.

We give two examples of weak isochronous foci and we give an example of a family of quadratic systems depending on a parameter $w \in \mathbb{R}$ which never has an isochronous critical point at the origin. When $w = 0$ the system is a center and when $w \neq 0$ the system is a weak focus (stable if $w < 0$ and unstable if $w > 0$). Hence, we show that there is no isochronous section for any system of this family.

2 Summary of known results

We denote by \mathcal{U} any open neighborhood of the origin and by $\rho : \mathcal{U} \to \mathbb{R}^+ \times \mathbb{R}$ the change to polar coordinates, that is, $\rho(x, y) = (r, \theta)$ with $r = \sqrt{x^2 + y^2}$ and $\theta = \arctan(y/x)$. As usual, ρ_* is the pull-back defined by ρ and ρ^* is the corresponding push-forward.

In order to give the definition of isochronous critical point, we consider the form of (1.1) in polar coordinates, that is, $\rho_* (X) = r f(r, \theta) \frac{\partial}{\partial r} + g(r, \theta) \frac{\partial}{\partial \theta}$, where f and g are analytic functions in a neighborhood of $\rho(O)$.

Definition 2.1 The critical point O of (1.1) is said to be isochronous if there exists a local analytic change of variables ϕ with $D\phi(O) = I$ and such that $\rho_* \phi_*(X) = r f(r, \theta) \frac{\partial}{\partial r} + g(\theta) \frac{\partial}{\partial \theta}$.

A system (1.1) with an isochronous critical point at the origin is more easily written using the arc–length φ, defined by $\varphi = \int_0^\theta d\theta / g(\theta)$, as new angular variable. In this formulation we end up to the following definition.

Definition 2.2 The critical point O of (1.1) is said to be isochronous if there exists a local analytic change of variables ϕ with $D\phi(O) = I$ and such that $\rho_* \phi_*(X) = r f(r, \theta) \frac{\partial}{\partial r} + k \frac{\partial}{\partial \varphi}$, $k \in \mathbb{R}$, $k \neq 0$.

The existence of an isochronous section is equivalent to the existence of the local analytic change of variables ϕ, as we will show in Theorem 3.1. We state the definition of isochronous critical point by means of ϕ since this is its classical definition which let us give the summary of known results.

Linear foci, $(\lambda x - y) \frac{\partial}{\partial x} + (x + \lambda y) \frac{\partial}{\partial y}$, are isochronous since their angular speed is constant along rays through the origin. For a linear focus, every ray through the origin is an isochronous section. We say that a vector field X of the form (1.1) is linearizable when there exists a local change of variables ϕ with $D\phi(O) = I$ such that $\phi_*(X)$ is a linear focus.

By the above definition, every analytic linearizable focus is isochronous. If ϕ is the linearizing transformation and Σ is a ray, then $\phi^{-1}(\Sigma)$ is an isochronous section of the analytic linearizable focus. Next theorem, which is a special case of classical Poincaré’s Theorem, shows that every strong focus of an analytic system is linearizable and therefore isochronous. For a proof, see [5, 15].

Theorem 2.3 [15] Let us consider the planar real analytic system

$$
\begin{align*}
\dot{x} &= \alpha x - \beta y + g_1(x, y), \\
\dot{y} &= \beta x + \alpha y + g_2(x, y),
\end{align*}
$$

(2.1)
with $\alpha \beta \neq 0$, and g_1 and g_2 are of second order in x and y. Then there exists a real local analytic change of variables $\phi(x, y) = (u, v)$ with $D\phi(O) = I$ which transforms system (2.1) into $\dot{u} = \alpha u - \beta v, \dot{v} = \beta u + \alpha v$.

This result can also be stated for a system of the form (2.1) satisfying weaker differentiability restrictions. Since we are only concerned with analytic vector fields, we state the result only for the analytic case.

We have seen that every analytic linearizable focus is isochronous, but finding the linearization, and hence the isochronous sections, is usually too difficult. Next theorem proved in [12] shows that it is not necessary to find the explicit form of the linearization, since the orbits of a suitable commutator are isochronous sections of \mathcal{X}.

Theorem 2.4 [12] *If the vector field \mathcal{X} given by (1.1) has a focus O and a nontrivial commutator \mathcal{Y} with a star node at O, then every orbit of \mathcal{Y} contained in a neighborhood of O is an isochronous section of \mathcal{X}.*

This result only applies when the vector field \mathcal{X} has a strong focus at the origin or has a center because if the vector field \mathcal{X} has a weak focus at the origin with a nontrivial commutator \mathcal{Y} with a star node at O, then by Theorem 1.1 the vector field has a center at the origin. Next corollary proved in [12] shows that every system with a strong focus and a nontrivial commutator has a commutator with a star node.

Corollary 2.5 [12] *If the vector field \mathcal{X} has eigenvalues with non-zero real part at a focus O and a nontrivial commutator \mathcal{Y}, then it has infinitely many isochronous sections.*

In [9] and [12], different sufficient conditions for an analytic vector field to have an isochronous weak focus at O are given. In [12], the particular case of a differential system equivalent to a Liénard equation is taken into account.

3 Characterization of isochronous critical points

The following theorem characterizes when the origin O of a system (1.1) has a section Σ such that the period function $\tau : \Sigma \to \mathbb{R}^+$ is constant, that is, it does not depend on the point $p \in \Sigma$ considered. We will see that if such section exists, then there are an infinite number of them. In particular next theorem characterizes the existence of isochronous critical points.

Theorem 3.1 Let us consider an analytic system (1.1). The following statements are equivalent:

(i) There exists an analytic change of variables $\phi : \mathcal{U} \to \mathcal{U}$, where \mathcal{U} is a neighborhood of the origin, with $D\phi(O) = I$, such that the transformed system reads for $\rho \phi_*(\mathcal{X}) = rf(r, \theta) \frac{\partial}{\partial r} + g(\theta) \frac{\partial}{\partial \theta}$.

(ii) There exists an analytic vector field \mathcal{Y} defined in a neighborhood of the origin of the form

$$\mathcal{Y} = (x + A(x, y)) \frac{\partial}{\partial x} + (y + B(x, y)) \frac{\partial}{\partial y}, \quad (3.1)$$

with A and B analytic functions of order ≥ 2, such that $[\mathcal{X}, \mathcal{Y}] = \mu(x, y) \mathcal{Y}$, where $\mu(x, y)$ is a scalar function with $\mu(0, 0) = 0$.

(iii) There exists a section Σ such that the period function $\tau : \Sigma \to \mathbb{R}^+$ is constant.
Proof of Theorem 3.1. In order to prove the equivalence of the three statements, it suffices to show (i) \(\Rightarrow\) (ii), (ii) \(\Rightarrow\) (iii) and (iii) \(\Rightarrow\) (i). We also include the proof of (ii) \(\Rightarrow\) (i) and (iii) \(\Rightarrow\) (ii), for completeness.

In the subsequent, we will denote by a subindex a partial derivative, for instance, if \(f(r, \theta)\) is a function of \((r, \theta)\), \(\frac{\partial f}{\partial r}\) is replaced by \(f_r\).

(i) \(\Rightarrow\) (ii) We define

\[\mathcal{Y} = \phi^* \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right), \]

and we have that \(\mathcal{Y}\) has the form described since \(\phi\) is an analytic change such that \(D\phi(O) = I\). Moreover,

\[
[X, \mathcal{Y}] = \left[\phi^* \phi_* X', \phi^* \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right) \right] = \phi^* \rho^* \left(\left[r f(r, \theta) \frac{\partial}{\partial r} + g(r, \theta) \frac{\partial}{\partial \theta}, r \frac{\partial}{\partial r} \right] \right) = \phi^* \rho^* \left(-r^2 f_r(r, \theta) \frac{\partial}{\partial r} \right).
\]

We denote by \(\mu(x, y) = \phi^* \rho^* (-r f_r(r, \theta))\). It is obvious that is an analytic scalar function with \(\mu(0, 0) = 0\). We have

\[
[X, \mathcal{Y}] = \mu(x, y) \phi^* \rho^* \left(r \frac{\partial}{\partial r} \right) = \mu(x, y) \phi^* \left(x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \right) = \mu(x, y) \mathcal{Y}.
\]

(ii) \(\Rightarrow\) (i) From normal form theory, see [5, 15], we have that there exists an analytic change of variables \(\phi_*\), defined in a neighborhood \(U\) of the origin and with \(D\phi(O) = I\), such that \(\phi_*(\mathcal{Y}) = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}\).

Since \([X, \mathcal{Y}] = \mu \mathcal{Y}\), we have \([\phi_* X', \phi_* \mathcal{Y}] = \phi_* (\mu \phi_* \mathcal{Y})\). We introduce the following notation \(\tilde{\mu}(r, \theta) := \rho_\ast \phi_* (\mu(x, y))\) and \(\rho_\ast \phi_* (X') := r f(r, \theta) \frac{\partial}{\partial r} + g(r, \theta) \frac{\partial}{\partial \theta}\). Hence,

\[
\left[r f(r, \theta) \frac{\partial}{\partial r} + g(r, \theta) \frac{\partial}{\partial \theta}, r \frac{\partial}{\partial r} \right] = \tilde{\mu}(r, \theta) r \frac{\partial}{\partial r}.
\]

We compute the Lie bracket and we have the following equality

\[-r^2 f_r(r, \theta) \frac{\partial}{\partial r} - r g_r(r, \theta) \frac{\partial}{\partial \theta} = \tilde{\mu}(r, \theta) r \frac{\partial}{\partial r},\]

which implies \(g_r(r, \theta) \equiv 0\) and, therefore, \(g(r, \theta) = g(\theta)\). We remark that since the origin of the system defined by \(X\) is a monodromic critical point, we have that \(g(\theta) > 0\) or \(g(\theta) < 0\) for all \(\theta \in \mathbb{R}\). Moreover, as before, we may consider the arc–length \(\varphi = \int_0^\theta d\theta/g(\theta)\). This integral is well defined and it gives a change of variable since \(g(\theta)\) has a definite sign for all \(\theta \in \mathbb{R}\). Then, after this change, the angular speed of the corresponding system is constant.

(ii) \(\Rightarrow\) (iii) This statement is a clear corollary of Theorem 2.4. However, a geometric outline of its proof is easy enough to be given here.

Let, for any \(p \in U\), be \(\Phi_t(p)\) the flow of \(X\) and \(\Psi_t(p)\) that of \(\mathcal{Y}\), with the initial condition \(\Phi_0(p) = \Psi_0(p) = p\). Without lack of generality, we can assume that \(O\) is the unique singular point for \(X\) and \(\mathcal{Y}\) in \(U\). Let \(p, q \in U\), \(p, q \neq O\). By classical Lie
theory, we have that the relation $[X, Y] = \mu(x, y)Y$ implies that if $\Sigma = \{\Psi_s(p) | s \in \mathbb{R}\}$ is a solution of Y, then for any $t \in \mathbb{R}$, $\Phi_t(\Sigma)$ is another solution for Y.

It is clear that Σ is a transversal section for X. Let τ, \mathcal{P} be the corresponding period function and Poincaré map defined on it. We will show that any two points $p, q \in \Sigma$ have the same period function. We have that $\mathcal{P}(p) = \Phi_{\tau(p)}(p)$. The time $\tau(p)$ leaves Σ invariant: $\Phi_{\tau(p)}(\Sigma) \subseteq \Sigma$. Let $q \in \Sigma$, then there exists $s \in \mathbb{R}$ such that $q = \Psi_s(p)$. The minimal time to meet Σ again, that is $\tau(q)$, must coincide with $\tau(p)$ since the time $\tau(p)$ brings the solution Σ into itself. Then $\tau(p) = \tau(q)$.

(iii) \Rightarrow (ii) We consider $\Phi_t(p)$ the flow of system X defined in the neighborhood \mathcal{U} of the origin and with the initial condition $\Phi_0(p) = p$.

Given a section through the origin, $\Sigma \subset \mathbb{R}^2$, we consider its parameterization by its arc-parameter σ, that is, there exists a map $c : \mathbb{R} \rightarrow \Sigma$ such that $\Sigma = \{c(\sigma) | \sigma \in \mathbb{R}\}$. We can assume without loss of generality that $\lim_{\sigma \rightarrow -\infty} c(\sigma) = O$ and that $\lim_{\sigma \rightarrow -\infty} c'(\sigma) \neq (0, 0)$. As usual, $c'(\sigma)$ denotes the derivative of the parameterization of the curve $c : \sigma \mapsto c(\sigma)$ at the value σ. We define the following set of transformations $\Psi : \mathbb{R} \times \mathcal{U} \rightarrow \mathcal{U}$ in the following way, see Figure 1.

If $p \in \Sigma$, that is $p = c(\sigma_0)$ for a certain $\sigma_0 \in \mathbb{R}$, and $s \in \mathbb{R}$ then $\Psi_s(p) := c(\sigma_0 + s)$.

If $p \not\in \Sigma$, there exists $t_0(p) \in \mathbb{R}$ such that $\Phi_{t_0(p)}(p) \in \Sigma$, that is, there exists $\sigma_0 \in \mathbb{R}$ such that $c(\sigma_0) = \Phi_{t_0(p)}(p)$. Assume that $t_0(p) > 0$ is the lowest positive real with this property. For any $s \in \mathbb{R}$ we define $\Psi_s(p) = \Phi_{-t_0(p)}(c(\sigma_0 + s))$.

In the subsequent, for any $p \in \mathcal{U}$ we denote by $t_0(p)$ as the lowest positive real such that $\Phi_{t_0(p)}(p) \in \Sigma$. It is clear that $t_0 : \mathcal{U} \rightarrow [0, T)$ where $T > 0$ is the period defined by the section Σ. We denote by $\sigma_0(p) \in \mathbb{R}$ the value of the parameter such that $\Phi_{t_0(p)}(p) = c(\sigma_0(p))$.

![Figure 1: Definition of $\Psi_s(p)$](image)

We are going to prove that the set of transformations defined by Ψ_s is a one-parameter Lie group of point transformations. We need to show the following statements:

(a) For all $s \in \mathbb{R}$, $\Psi_s : \mathcal{U} \rightarrow \mathcal{U}$ is bijective.

(b) Ψ_0 is the identity map.

(c) For any $s_1, s_2 \in \mathbb{R}$, $\Psi_{s_1} \circ \Psi_{s_2} = \Psi_{s_1 + s_2}$.

(d) $\Psi \in C^\omega(\mathbb{R}) \times C^\omega(\mathcal{U})$.

7
(a) Fixed $s \in \mathbb{R}$, let us consider any $p \in \mathcal{U}$ and we have $\Psi_s(p) = \Phi_{-t_0(p)}(c(\sigma_0(p) + s))$. Let $p_1, p_2 \in \mathcal{U}$. If $\Psi_s(p_1) = \Psi_s(p_2)$, let q be this point $q = \Psi_s(p_1)$. Then, the points $\Phi_{t_0(p_1)}(q) = c(\sigma_0(p_1) + s)$ and $\Phi_{t_0(p_2)}(q) = c(\sigma_0(p_2) + s)$ belong to Σ. Both, $t_0(p_1)$ and $t_0(p_2)$ are defined as the minimum positive time with this property so, $t_0(p_1) = t_0(p_2)$. Therefore, $c(\sigma_0(p_2) + s) = c(\sigma_0(p_1) + s)$ and this gives $\sigma_0(p_1) = \sigma_0(p_2)$ which implies $p_1 = p_2$. Then, Ψ_s is injective.

Let us see that it is exhaustive. Given $q \in \mathcal{U}$ let $p = \Phi_{-t_0(q)}(c(\sigma_0(q) - s))$. Then, $t_0(p) = t_0(q)$, $\sigma_0(p) = \sigma_0(q) - s$ and $\Psi_s(p) = \Phi_{-t_0(q)}(c(\sigma_0(q))) = q$. The fact that the section Σ is isochronous ensures the well-definition of this p.

(b) Given $p \in \mathcal{U}$ we have that $\Psi_0(p) = \Phi_{-t_0(p)}(c(\sigma_0(p)))$ where $c(\sigma_0(p)) = \Phi_{t_0(p)}(p)$.

Then, clearly, $\Psi_0(p) = p$.

(c) Given $p \in \mathcal{U}$, it is clear that $t_0(\Phi_{-t_0(p)}(c(\sigma_0 + s_1))) = t_0(\Phi_{-t_0(p)}(c(\sigma_0 + s_1 + s_2))) = t_0(p)$. We have $\Psi_{s_1} \circ \Psi_{s_2}(p) = \Psi_{s_1}(\Phi_{-t_0(p)}(c(\sigma_0 + s_1))) = \Phi_{-t_0(p)}(c(\sigma_0 + s_1 + s_2)) = \Psi_{s_1 + s_2}(p)$.

(d) The regularity of Ψ is clear due to the regularity of Φ and c.

Once we have that Ψ is a one-parameter Lie group of point transformations, we apply the first fundamental theorem of Lie, see [13], and we have that there exists an analytic vector field \mathcal{Y} whose flow coincides with $\Psi_s(p)$. Moreover, \mathcal{Y} is given by $\frac{\partial \mathcal{Y}}{\partial x}((p), s = 0)$. By the definition $\Psi_s(p) = \Phi_{t_0(p)}(c(\sigma_0(p) + s))$ we have that $\mathcal{Y}(p) = \Phi_{t_0(p)}(c(\sigma_0(p))) \cdot c'(\sigma_0(p)) + s_{1+2}(p)$, where $\Phi_{t_0}(q)$ denotes the jacobian matrix of the analytic change of variables Φ, at the point q and, as before, $c'(\sigma)$ denotes the derivative of the parameterization of the curve $c : \sigma \mapsto c(\sigma)$ at the value σ.

Moreover, by construction, \mathcal{Y} has a star node at the origin. This is clear by the fact that each of its orbits $\Phi_t(\Sigma)$, $t \in [0,T]$, has a different tangent at the origin. Let $\mathcal{Y} = \xi(x,y) \frac{\partial}{\partial x} + \eta(x,y) \frac{\partial}{\partial y}$. Since \mathcal{Y} has a star node at the origin, by a classical result stated in [17], page 63, we have that $\xi(x,y) = xh(x,y) + h.o.t.$ and $\eta(x,y) = yh(x,y) + h.o.t.$, where $h(x,y)$ is a homogeneous polynomial and h.o.t. denotes higher order terms. Therefore, in order to see that \mathcal{Y} is of the form (1.2), we only need to show that the divergence of the vector field \mathcal{Y}, that is $\text{div}\mathcal{Y}$, is different from zero at the origin, where $\text{div}\mathcal{Y}(x,y) = \frac{\partial \xi}{\partial x}(x,y) + \frac{\partial \eta}{\partial y}(x,y)$. The divergence of the vector field \mathcal{Y} is related to the inverse integrating factor of \mathcal{Y}. The inverse integrating factor of \mathcal{Y} is given by $\mathcal{Y}(x,y) = (\lambda x - y + P(x,y))\eta(x,y) - (x + \lambda y + Q(x,y))\xi(x,y)$ which is defined in the neighborhood \mathcal{U} of the origin. An easy computation shows that

$$V(\Psi_s(x_0,y_0)) = V(x_0,y_0) \exp \left\{ \int_0^s \text{div}\mathcal{Y}(\Psi_u(x_0,y_0)) du \right\}$$

for any $(x_0,y_0) \in \mathcal{U}$. It is clear that $V(0,0) = 0$. Let $p_0 := (x_0,y_0) \in \mathcal{U} \setminus \{(0,0)\}$ and assume that $V(p_0) = 0$. This implies that the vectors $\mathcal{Y}(p_0)$ and $\mathcal{X}(p_0)$ are parallel. By the definition of \mathcal{Y}, we have that

$$\mathcal{Y}(p_0) = \Phi_{-t_0(p_0)}(c(\sigma_0(p_0))) \cdot c'(\sigma_0(p_0)) = \Phi_{-t_0(p_0)}(\Phi_{t_0(p_0)}(p_0)) \cdot \mathcal{Y}(\Phi_{t_0(p_0)}(p_0)).$$

We denote by $q_0 = \Phi_{t_0(p_0)}(p_0)$ and we have $\Phi_{t_0(p_0)}(q_0) \cdot \mathcal{Y}(q_0) = \mathcal{Y}(q_0)$. Since Φ is the flow of \mathcal{X}, we have $\Phi_{t_0(p_0)}(q_0) \cdot \mathcal{X}(q_0) = \mathcal{X}(q_0)$. Therefore, if $\mathcal{Y}(p_0)$ and $\mathcal{X}(p_0)$ are parallel, then $\mathcal{Y}(q_0)$ and $\mathcal{X}(q_0)$ are parallel. However, $q_0 \in \Sigma$ and the vector $\mathcal{Y}(q_0)$ is tangent to Σ at q_0, so the parallelism between $\mathcal{Y}(q_0)$ and $\mathcal{X}(q_0)$ is a contradiction with Σ being a transversal section for \mathcal{X}. Therefore, we conclude that $V(x_0,y_0) \neq 0$ for any $(x_0,y_0) \in \mathcal{U} \setminus \{(0,0)\}$.

8
By using this fact, we prove that \(\text{div} \mathcal{Y}(0,0) \neq 0 \). Let us consider \((x_0, y_0) \in \mathcal{U} - \{(0,0)\}\) and we have that \(\lim_{x \to -\infty} \Psi_s(x_0, y_0) = (0,0)\). By continuity and the identity \((3.2)\), we have that the integral \(I(x_0, y_0) := \int_{-\infty}^{0} \text{div} \mathcal{Y}(\Psi_u(x_0, y_0)) du\) diverges. \(I(x_0, y_0)\) is continuous, so \(I(0,0)\) also diverges. Hence, if \(\text{div} \mathcal{Y}(0,0) = 0\), then \(I(0,0) = \int_{-\infty}^{0} \text{div} \mathcal{Y}(\Psi_u(0, 0)) du = \int_{-\infty}^{0} \text{div} \mathcal{Y}(0,0) du = 0\), in contradiction with being divergent. Therefore, \(\text{div} \mathcal{Y}(0,0) \neq 0\).

Moreover, by definition it is clear that the flow of \(\mathcal{X}\) takes solutions of \(\mathcal{Y}\) to solutions of \(\mathcal{Y}\). Another classical result on Lie symmetries gives that \(\mathcal{X}\) is a Lie symmetry for \(\mathcal{Y}\) and therefore, there exists an analytic scalar function \(\mu : \mathcal{U} \to \mathbb{R}\) such that \([\mathcal{X}, \mathcal{Y}] = \mu \mathcal{Y}\). Moreover, \(\mu(0,0) = 0\) since both functions defining the vector field \([\mathcal{X}, \mathcal{Y}]\) have order two at the origin and the vector field \(\mathcal{Y}\) has order one at the origin.

(i) \(\Rightarrow\) (iii) The ray \(\Sigma = \{(x,0) | x > 0\}\) is an isochronous section for the system \(\phi_\ast(\mathcal{X})\), where \(\rho, \phi_\ast(\mathcal{X}) = rf(r, \theta) \frac{\partial}{\partial r} + g(\theta) \frac{\partial}{\partial \theta}\), since \(\tilde{\tau} : \tilde{\Sigma} \to \mathbb{R}^+\) is given by \(\tilde{\tau}(x) = \int_{0}^{2\pi} d\theta / g(\theta)\), which is constant for every \(x \in \tilde{\Sigma}\). Then, \(\Sigma := \phi^{-1}(\tilde{\Sigma})\) is an isochronous section for system \((1.1)\) and the period function is given by \(\tau := \phi^\ast(\tilde{\tau})\).

Using Theorem 1.1 and Theorem 3.1, we reencounter the following result which characterizes isochronous centers and which is stated and proved in [2] (Theorem 2.3, page 140).

Theorem 3.2 System \((1.1)\) with \(\lambda = 0\) has an isochronous center at the origin if, and only if, there exists a smooth vector field \(\mathcal{Z}\) of the form \((1.2)\) such that \([\mathcal{X}, \mathcal{Z}] = 0\).

Proof. Assume that system \((1.1)\), with \(\lambda = 0\), has an isochronous center at the origin. Then by Theorem 1.1 there exists a smooth vector field \(\mathcal{U}\) of the form \((1.2)\) and a smooth function \(\nu\), with \(\nu(0,0) = 0\) such that \([\mathcal{X}, \mathcal{U}] = \nu \mathcal{X}\). Moreover, by Theorem 3.1 there exists an analytic vector field \(\mathcal{Y}\) of the form \((1.2)\) and an analytic functions \(\mu\), with \(\mu(0,0) = 0\), satisfying \([\mathcal{X}, \mathcal{Y}] = \mu \mathcal{Y}\). Since \(\mathcal{X}\) and \(\mathcal{Y}\) are transversal in a neighborhood of the origin, they define a basis in this neighborhood and therefore, there exist two smooth functions \(\alpha, \beta\) such that \(\mathcal{U} = \alpha \mathcal{X} + \beta \mathcal{Y}\). Since both \(\mathcal{U}\) and \(\mathcal{Y}\) have the form \((1.2)\), we have that \(\beta = 1 + \beta_1\) where \(\beta_1\) is a smooth function of order \(\geq 1\). We compute

\[
[\mathcal{X}, \mathcal{U}] = [\mathcal{X}, \alpha \mathcal{X} + \beta \mathcal{Y}] = \mathcal{X}(\alpha) \mathcal{X} + \alpha [\mathcal{X}, \mathcal{X}] + \mathcal{X}(\beta) \mathcal{Y} + \beta [\mathcal{X}, \mathcal{Y}]
\]

\[
= \mathcal{X}(\alpha) \mathcal{X} + (\mathcal{X}(\beta) + \beta \mu) \mathcal{Y}.
\]

Since \([\mathcal{X}, \mathcal{Y}] = \nu \mathcal{X}\), we deduce \(\mathcal{X}(\beta) = -\mu \beta\).

We define \(\mathcal{Z} = \beta \mathcal{Y}\) which is a smooth vector field with the form \((1.2)\) since \(\beta = 1 + \beta_1\) where \(\beta_1\) is a smooth function of order \(\geq 1\). Then, \([\mathcal{X}, \mathcal{Z}] = [\mathcal{X}, \beta \mathcal{Y}] = \beta [\mathcal{X}, \mathcal{Y}] + \mathcal{X}(\beta) \mathcal{Y} = \beta \mu \mathcal{Y} - \mu \beta \mathcal{Y} = 0\).

We want to remark a difference between this Theorem 3.2 and Theorem 1.2. In Theorem 1.2 the origin is required to be a center and the result characterizes its isochronicity. In Theorem 3.2, the origin is only a linear center (that the equilibrium is a center is not required), thanks to Theorem 1.1.

The methods developed in this work can be used to classify isochronous critical points for polynomial systems. We give some examples of systems of the form \((1.1)\) with an isochronous critical point at the origin. The determination of the origin being a focus is straightforward by computing Liapunov constants, see for instance [9]. When
the origin is a center, a first integral defined on a neighborhood of it is provided. We also give an example of a family of quadratic systems depending on a real parameter \(w \neq 0 \) which never has an isochronous critical point at the origin. When \(w = 0 \), the system has a center, and when \(w \neq 0 \) the system has a weak focus at the origin.

Example 1. The following system has an isochronous critical point at the origin.

\[
\begin{align*}
\dot{x} &= -y + \lambda_2 x^3 + \lambda_3 x^2 y + \lambda_4 x y^2, \\
\dot{y} &= x + \lambda_2 x^2 y + \lambda_3 x y^2 + \lambda_4 y^3,
\end{align*}
\] (3.3)

with \(\lambda_2, \lambda_3, \lambda_4 \in \mathbb{R} \). In polar coordinates, this system reads for

\[
\dot{r} = \frac{r^3}{2} (\lambda_2 + \lambda_4 + (\lambda_2 - \lambda_4) \cos(2\theta) + \lambda_3 \sin(2\theta)), \quad \dot{\theta} = 1.
\]

Then, by definition, the origin is an isochronous critical point. A first integral for system (3.3) is given by

\[
H(x, y) = \frac{x^2 + y^2}{1 - \lambda_3 x^2 + (\lambda_2 - \lambda_4)x y + (\lambda_2 + \lambda_4)(x^2 + y^2) \arctan(y/x)}.
\]

When \(\lambda_2 + \lambda_4 \neq 0 \), the origin is a focus and when \(\lambda_2 + \lambda_4 = 0 \), the origin is a center. Let us consider \(\mathcal{X} \) the corresponding vector field and \(\mathcal{Y} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \). We have \([\mathcal{X}, \mathcal{Y}] = -2(\lambda_2 x^2 + \lambda_3 x y + \lambda_4 y^2)\mathcal{Y}\).

Example 2. The following system has an isochronous focus at the origin.

\[
\begin{align*}
\dot{x} &= -y - 2xy + xy^2 - 2y^3 + \mu_2(x^3 - xy^2) + \mu_3 x^2 y - y^4 + \\
& \quad \mu_2(x^2 y^2 + y^4) - \mu_2 xy^4 - \mu_3 y^5 - \mu_2 y^5, \\
\dot{y} &= x + y^2 + y^3 + \mu_2(x^2 y - y^3) + \mu_3 x y^2 + 2\mu_2 x y^3 + \mu_3 y^4 + \mu_2 y^5,
\end{align*}
\] (3.4)

where \(\mu_i \) are arbitrary real constants for \(i = 2, 3 \). This system has no constant angular speed. An easy computation shows that the first Liapunov constant equals \(-1/2\), so the origin of (3.4) is a stable weak focus. We use Theorem 3.1 to ensure the property of isochronicity.

Let us consider \(\mathcal{X} \) the corresponding vector field and \(\mathcal{Y} \) the following analytic vector field

\[
\mathcal{Y} = (x - y^2) \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}.
\]

The Lie bracket \([\mathcal{X}, \mathcal{Y}]\) gives \([\mathcal{X}, \mathcal{Y}] = -2(y^2 + \mu_2(x^2 - y^2 + 2xy^2 + y^4) + \mu_3(x y + y^3))\mathcal{Y}\). Therefore, the hypothesis of Theorem 3.1 are satisfied and the origin of system (3.4) is an isochronous focus.

Example 3. The following family of quadratic systems depending on the parameter \(w \in \mathbb{R} \)

\[
\begin{align*}
\dot{x} &= -y, \\
\dot{y} &= x - 4wxy + 2y^2,
\end{align*}
\] (3.5)

never has an isochronous critical point at the origin.

It can be shown that \(w \) is the first Liapunov constant for this family of quadratic systems. Hence, when \(w > 0 \) the origin is an unstable weak focus and when \(w < 0 \) the origin is a stable weak focus. When \(w = 0 \), we have that \(H(x, y) = (4x + 8y^2 - 1)e^{4x} \) defines a first integral which is analytic in a neighborhood of the origin. So, the origin is a center for \(w = 0 \).
We will try to construct a vector field \(\mathcal{Y} \) and a function \(\mu \) satisfying Theorem 3.1 and we will get a contradiction. Assume that there exists a vector field \(\mathcal{Y} \) with a star node at the origin such that the Lie bracket between the vector field \(\mathcal{X}_w \) defined by (3.5) and \(\mathcal{Y} \) is equal to \(\mu(x, y) \mathcal{Y} \) for a certain scalar analytic function \(\mu(x, y) \) with \(\mu(0, 0) = 0 \). We can write \(\mathcal{Y} = (x + \sum_{i>1} A_i(x, y)) \partial / \partial x + (y + \sum_{i>1} B_i(x, y)) \partial / \partial y \), where \(A_i(x, y), B_i(x, y) \) are homogeneous polynomials of degree \(i \) and \(\mu(x, y) = \sum_{i>0} m_i(x, y) \) where \(m_i(x, y) \) is a homogeneous polynomial of degree \(i \).

Equating the terms of order 2 in the equation \([\mathcal{X}_w, \mathcal{Y}] = \mu \mathcal{Y} \) we get the two following equations:

\[
-y \frac{\partial A_2}{\partial x} + x \frac{\partial A_2}{\partial y} + B_2 = m_1 x,
\]

\[
-y \frac{\partial B_2}{\partial x} + x \frac{\partial B_2}{\partial y} + 4xwy - 2y^2 - A_2 = m_1 y.
\]

The solution of these two equations is \(A_2(x, y) = ax^2 + bxy - (2/3)y^2 \), \(B_2(x, y) = (4w/3)x^2 + axy + by^2 \) and \(m_1(x, y) = (b + (4w/3))x - ((4/3) + a)y \), where \(a, b \) are any two real numbers.

Equating the terms of order 3 in the equation \([\mathcal{X}_w, \mathcal{Y}] = \mu \mathcal{Y} \), we get the two following equations:

\[
-y \frac{\partial A_3}{\partial x} + x \frac{\partial A_3}{\partial y} + (2y^2 - 4wxy) \frac{\partial A_2}{\partial y} + B_3 = m_2 x + m_1 A_2,
\]

\[
-y \frac{\partial B_3}{\partial x} + x \frac{\partial B_3}{\partial y} + (2y^2 - 4wxy) \frac{\partial B_2}{\partial y} + 4wyA_2 - A_3 - 4(y - wx)B_2 = m_2 y + m_1 B_2.
\]

Let us write \(m_2(x, y) = \sum_{i+j=2} m_{ij} x^i y^j \), \(A_3(x, y) = \sum_{i+j=3} a_{ij} x^i y^j \) and \(B_3(x, y) = \sum_{i+j=3} b_{ij} x^i y^j \). We consider the vector of unknowns

\[
\mathbf{v} = \{ m_{20}, m_{11}, m_{02}, a_{30}, a_{21}, a_{12}, a_{03}, b_{30}, b_{21}, b_{12}, b_{03} \}
\]

and we can write the previous two equations as a linear system of eight equations in these eleven unknowns: \(\mathbf{M} \mathbf{v} = \mathbf{k} \). The matrix \(\mathbf{M} \) is

\[
\mathbf{M} = \begin{pmatrix}
-1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & -3 & 0 & 2 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & -2 & 0 & 3 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & -1 & 0 & 0 & -3 & 2 \\
0 & -1 & 0 & 0 & 0 & -1 & 0 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

which can be seen that it is of rank 7. The vector \(\mathbf{k} \) is

\[
\mathbf{k} = \left\{ \frac{a}{3}(3b + 4w), \frac{1}{3}(-4a - 3a^2 + 3b^2 + 16bw), \frac{1}{9}(-36b - 9ab - 56w), \right.
\]

\[
\frac{2}{9}(16 + 3a), \frac{4}{9}(3b - 8w) w, \frac{1}{9}(9ab + 32w - 36aw), \frac{1}{3}(2a - 3a^2 + 3b^2 + 4bw), \frac{1}{3}(-4b - 3ab + 8w) \right\}.
\]
The matrix \((M|k)\) has rank 8 as the determinant of one of its \(8 \times 8\) minors equals \(1 + w^2\). So, the linear system does not satisfy the compatibility condition and, hence, no such \(Y\) nor \(\mu\) can exist.

Acknowledgements
The authors would like to thank Prof. I.A. García from Univ. de Lleida and Prof. M. Sabatini from Univ. degli Studi di Trento for several useful conversations and remarks about this work.

References

